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T H E R M O D Y N A M I C  S U B S T A N T I A T I O N  O F  T H E  

V A R I A T I O N A L  P R I N C I P L E  F O R  N O N L I N E A R  

P R O B L E M S  O F  U N S T E A D Y - S T A T E  H E A T  C O N D U C T I O N  

V. A. Bondarev UDC 536.2:517.9 

A variational formulation of the problem of unsteady-state heat conduction is presented. A nonlinear 

functional obtained as a result of an analysis of unsteady-state heat transfer is suggested. The variational 

method  can be used for  solving problems with a strong nonlineari ty  for  which f in i te -d i f f erence  

approximat ions  do not enable one to obtain sutisfactory results. A technique for  calculating the 

approximation error in variational problems is considered. 

The methods of variational calculus usually used do not enable one to determine the functional that has 

an extremum at the solution of nonlinear problems of unsteady-state heat conduction under the condition that the 

differential equation of heat conduction will be the Euler equation for the functional studied. The present paper 

suggests a new principle for constructing such a functional based on thermodynamic analysis of variations of the 

solution. Here residuals of the heat conduction equation and the boundary conditions are considered as fictitious 

heat sources that depend on time and the spatial coordinates. For these conditions approximating functions are 

solutions of a problem with fictitious source, that has a physical meaning, and arbitrary variations of the solution 

will be the result of the action of these sources [1, 2 ]. 

The suggested method for approximating solutions of unsteady-state heat conduction problems enables one 

to take into account all possible errors of the variational scheme and the corresponding fictitious heat sources. As 

a result the problem with fictitious sources is always solved correctly. For this problem, on the basis of the first 

law of thermodynamics, the heat balance equation for fictitious sources can be constructed and the signs of these 

sources as well as the signs of the corresponding variations of the solution can be determined. This makes it possible 

to suggest a method for estimating the absolute error that is thermodynamically substantiated. The performed 

analysis shows that with allowance for the signs of the fictitious sources approximations to the solution of the 

problem from below and from above can be found. In using the variational scheme considered one can diminish 

calculation errors by an order of magnitude or more as compared to other approximate methods. 

As follows from a thermodynamic analysis, the directivity of all spontaneous processes of heat transfer in 

a closed thermodynamic system toward equilibrium with the environment can be used as a principle for constructing 

a functional in problems of unsteady-state heat condution. In accordance with the second law of thermodynamics, 

only spontaneous processes bringing the system closer to thermal equilibrium with the environment are possible in 

a nonstationary thermodynamic system. Therefore, the system will approach the equilibrium state with a certain 

speed that is maximum for the assigned initial and boundary conditions. 

The solution will be varied so that at the preceding instants of time fictitious sources could exist that would 

increase the nonequilibrium condition in the system and between the system and the environment. Then in the 

problem involving sources the time corresponding to specified temperatures at some points will be greater than the 

time corresponding to the same temperatures for the solution. With such a choice of approximating functions a 

variational functional can be determined so that at the extremal point of the functional corresponding to the solution, 

the highest rate of temperature variation relative to some approximations will occur. If the variational problem has 

a solution, then the existence of a class of functions is always possible in which the maximum rate of temperature 
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variation corresponds to the solution, since, according to the second law of thermodynamics, in a real closed system, 

processes are possible that only bring the system to equilibrium. 

Use of the suggested functional in calculations is possible under the condition that the approximating 

functions enable one to realize the above-determined conditions for the existence of a functional extremum for the 

considered problem. One does not succeed in proving by any theoretical assumptions or formal arguments that in 

the selected class of functions an extremum can be realized to which the maximum rate of approach of the system 

to equilibrium corresponds. With allowance for this fact there are reasons to assume that the extremum following 

from the second law of thermodynamics is a thermodynamic regularity that, just like the second law of 

thermodynamics, cannot be substantiated theoretically and should be justified as a result of observations of physical 

objects. Therefore, for the problem considered the existence of an extremum should be checked by calculations. 

The minimization of errors in nonlinear  variational problems depends strongly on the choice of 

approximating functions, which, as is known, is typical for variational methods. In linear discrete schemes the 

approximation to the solution can be improved by increasing the number of steps, whereas in some nonlinear 

problems an increase in the number of steps does not provide the necessary minimization of errors. Therefore, in 

nonlinear variational problems minimization of errors should be performed by means of the corresponding choice 

of approximations. 

Approximating functions in nonlinear problems should allow for the character of the distribution of the 

derivatives Ox, Oxx, and O'T in the spatial region and also satisfy conditions of continuity of derivatives in all the 

cases where continuity occurs in the physical problem. One should take into account the fact that some 

approximation techniques do not make it possible to realize the existing continuity of derivatives and this can 

increase considerably the effect of fictitious sources. For example, in calculations of heating processes one can use 

the depth of the heated layer Xa(r), which is determined by means of the corresponding choice of approximating 

functions O. Beyond the limits of this layer the derivatives O'x and O'T are taken to be equal to zero. In this case 

in the vicinity of the point Xa(r) the derivatives O' x and Oxx can be rather large, whereas the derivative O~ is close 

to zero. This results in the appearance of considerable residuals of the heat conduction equation, which in the case 

of strong nonlinearity cannot be minimized by increasing the number of steps. 

In nonlinear finite-difference schemes the continuity of derivatives is one of the conditions for proving the 

convergence of nonlinear approximations to the solution. One succeeds in proving convergence only for simple 

physical conditions. However, in finite-difference schemes, for small times or in the case of a semi-infinite space 

one should also calculate some conventional thickness of the heated layer. With such an approximation it is 

impossible to provide continuity of derivatives, which, in accordance with the aforesaid, is one of the reasons for 

large and diff icul t - to-el iminate  errors that cannot be est imated quantitatively [3]. In finite-difference 

approximations in nonlinear problems one tries to minimize these errors by different artificial techniques that have 

no theoretical substantiation and are based on the personal experience of the programmer. This makes the creation 

of unified approaches to the development of standard calculational programs quite difficult. With allowance for the 

aforesaid, one should assume that in solving nonlinear problems variational schemes may prove to be promising. 

Studies show that approximating functions for nonlinear problems can be selected by analogy with solutions 

of linear problems that are close in meaning, assuming that after the introduction of the corresponding coefficients 

and some terms allowing for nonlinearity these functions can, to a certain degree, determine the real distribution 

of derivatives on the region and also take into account continuity of derivatives. Other known approximations in 

the class of functions O E C 2 can be used; however, as calculations show, this may require a considerable increase 

in the time for testing and correcting the approximating functions. 

Errors of temperature calculation in nonlinear unsteady-state problems can be reduced substantially if the 

solution of the problem 0 is approximated by broken curves composed of piecewise-smooth elements in the spatial 

and time regions. As these elements we use functions O, 

0 = 0 + f ,  0 = T / T  m ,  0 E (,2, (I) 

255  



that  a re  selected so that  the variat ions / of the solution ~ are  a rb i t ra r i ly  small.  It is evident  that  with some choice 

of the coefficients functions (1) allow not only minimizat ion of fictitious sources but also compensa t ion  of their 

mutual  effect to a cer ta in  extent .  

Studies  show that  to construct  the corresponding functional in a variat ional  formulat ion of a nonlinear 

problem of uns t eady - s t a t e  heat  conduction it is expedient  to introduce a new the rmodynamic  function qJ whose 

variat ion is de te rmined  as follows [1 ]: 

It/ 
Aq~ = - T2m f 0q (0) d r .  (2) 

o 

We find the heat  flux q(0) in (2) by the Four ier  law of heat  conduction q(O) = -,,l(0)0 x. In view of the fact 

that the flux ,7(0) depends  only on the tempera ture  0 we de te rmine  that  in the case of heat  conduct ion in a solid 

body the quant i ty  qJ is a function of state.  We find AW for an e lement  of unit area  with a length xn - .'co." 

"{" I't T~2Aq j = - f  f (q (0 )  0' x + O q i t ( O ) ) d x - O q ( O )  dr  = 0 .  (3) 
0 x 0 x 0 

We find the derivative of the heat  flux q'x(O) =, -(2(O)O'x)'x from the nonl inear  different ia l  equat ion of heat  conduction 

with a negative volumetric heat  source qv(O): 

( o )  = ~ (~) po'~ - (~ (o) o'x)' x + q .  ( o )  = o . 

Subst i tut ing q(O) and q'x(O) into (3), we de te rmine  a functional  for one-d imens iona l  condi t ions:  

(o) = T2~ f c (0) p ~ ;  + ~ (0) Ox 2 + Oq~ (0)) d~ - O~ (0) d~ = O. 
x 0 xo 

We assume that an initial t empera ture  dis t r ibut ion is ass igned:  

0 o = 0 (x, 0 ) .  

(4) 

(5) 

(6) 

Moreover, for the boundary  surface Sl the value of the heat flux qL is ass igned as a function of the tempera ture  

Osl, and  at the bounda ry  $2 = S - SI the tempera ture  dis t r ibut ion Os2(X, r) is known: 

E~ = q (Os l )  - ~. (Os l )  (O,1)',, = 0 ;  E 2 = G2 - O,2  (x, r ) .  (7) 

The  res iduals  E l are fictitious sources that depend  on the tempera ture  of the surface S],  and  E2 is equal to the 

change in the tempera ture  of the surface $2 result ing from the action of fictitious sources on this surface.  

Genera l iz ing  I (0 )  to the spatial  region ~ bounded  by the surface S, we de te rmine ,  using (5) - (7) ,  a 

functional whose extremal  propert ies  will be s tudied:  

r~ 

(0) = f 
0 

2 
f (~ (~) o k + c (O)p~O'r + ~qv (,I)) dr - f O,~u (O,~) dS - 
~ s I 

- f , l ( 0 s . 2 ) ( 0 ' s 2 ) ' a 0 s 2 d S [ d z  = 0 ,  0' k = O 0 / 0 x  k ,  k = 1 , 2 , 3 .  (8)  
S2 / 

Having subst i tu ted  approximat ions  (1) into (3), we find that for functional (8) both the necessary  condition 

51 = 0 and the sufficient condition c~21 < 0 or  c~21 > 0 for the existence of an ext remum on the solution 0 do not 

hold. Thus,  one does not succeed in de te rmining  an ext remum of the functional for the cons idered  problem by the 
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methods of classical variational calculus. Therefore, the existence of an extremum will be checked with allowance 

for the thermodynamic analysis presented above, considering residuals of the heat conduction equation (4) and the 

boundary conditions (7) as fictitious heat sources. With the known initial temperature distribution (6) and the 

prescribed boundary conditions (7) we find that the approximating functions (1) will be solutions of the physically 

meaningful problem (4), (6), and (7) with the fictitious sources e(O), El, and E2, and variations of the solution/" 

can be considered as resulting from the action of these sources. 

We vary the solution 0 so that the variations f are arbitrarily small and fictitious sources increase 

nonequilibrium nature of the thermodynamic system (4), (6), and (7) for a!l preceding r. Then, in accordance with 

the thermodynamic conditions, considered above the existence of an extremum of functional (8) on the solution 

is possible. 

To determine conditions for the existence of a functional extremum in the class of functions (I) by the 

Ostrogradskii-Gauss formula, we find from (7) and (8) 

1"12 
I (0) = f e (x k, r) tgdf~dz, (9) 

0 

where 

(I0) 

The presence of the operator e(x~, r) of Eq. (10) in (9) for three-dimensional conditions is a result of generalization 

of Eqs. (4) and (5) to the region f~. 

In accordance with (9) and (I0) the functional l(lO) always vanishes on the solution ~. Therefore, the 

existence of an extremum of the functional 1(O) can be established by determining the signs of its increment A/, 

which is equal to the value of the functional A/(lo) - I(O). Sufficient conditions for the existence of a functional 

extremum on the solution t9 are determined by the inequalities 

l (Oa)  < 0  and l(IOb) < 0  or l(lOa) > 0  and I(Ob) > 0 ,  (ll) 

which should be fulfilled uniquely for approximations to the solution t9 from below Oa and from above O b. 

Functional (9) involves the operator of the differential equation of heat conduction (10), which also occurs 

in the case of a functional for which the equation of heat conduction (10) is the Euler equation. In view of the fact 

that Eq. (10) is the expression for the first law of thermodynamics in the problem considered, functional (10) and 

the classical variational functional can be considered thermodynamically equivalent. With allowance for the fact 

that the problem with fictitious sources is solved correctly, the functional also satisfies the first law of 

thermodynamics for the problem with fictitious sources. 

According to expression (9), the functional I(O) determines the orthogonality of the residual e of Eq. (4) 

and the approximations O, which assumes minimization of e. In contrast  to projection methods using 

orthogonalization, for example, the Galerkin method, orthogonality is established not formally, but as a 

consequence of the physical condition (3) for the function of state qL By integration with respect to xk and r in (8) 

the effect of 2(O) and c(O) will bc taken into account not only at the nodal points xi and rj but also inside the 

corresponding ranges; as calculations show this improves considerably the approximation of the solution of the 

problem. It is well to bear in mind that in the case of finite-difference approximations the effect of 2(O) and c(O) 

can be taken into account only at the nodal points by substituting arbitrarily averaged numerical values of 2 and c 

into grid equations. Inside the approximating elements 2 and c are approximated with substantial errors. This leads 

to violation of the energy conservation law and to an increase in the fictitious heat sources and in the corresponding 

variations L 

If functions (1) afford rather good approximations, then it is expeditious to use a functional constructed 

for the entropy flow dq/T. Calculations show that this functional can have an cxtremum on the solution 0 in cases 
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xo than for the solution O, and O a l  will be the approximat ion to 0 from below. Similar ly  we find that  if at the time 

ro the function Aqs changes  sign from "minus" to "p lus"once ,  then for Aqs(r l )  = 0 the value of Obt will be the 

approximat ion  to 0 from above. In the same manne r  o ther  approximat ions  Oa] and Ob] are  de t e rmined ,  including 

at points x / i n s ide  the interval xn - xo. 

As an example  we consider  a nonl inear  problem of heat ing a semibounded  space in the case of a nonl inear  

heat  flux on the surface. A specific feature of this example is that  the use of discrete  approx imat ions  for such 

problems does not make it possible to provide cont inui ty  of the derivatives in the region and,  as was noted above, 

to approx imate  with sufficient accuracy the change in the derivatives of the solution 0 in space. 

We cons ider  heat ing of the semi- inf ini te  space by a radiat ive-convect ive heat flux 

q (0, r) = c r  4 (1 - 04 (0, r)) + acTrn ((1 - 0 (0, r))  (22) 

with the initial  condit ion T(x,  0) = const and  the medium tempera ture  T m = const for the case where  the thermal  

conductivity 2 depends  on temperature :  

( o )  = { l  + ( o  (x, r) - o (x, o)) ; = (x, o ) .  (23) it 

We assume that  c = const and  qv = O. 

The solution is approx imated  by piecewise-smooth elements:  

Oi, j = 1 - y (1 - F I ( x ,  r )  ; ), = 1 - T (x, O ) / T  m . (24) 

The  functions Ft  (x, r) are  selected so that  they take into account the real shift in the max imum of the derivat ive 

(O'T)ma x with increase  in r within the region from the boundary  surface x = 0. With al lowance for the aforesa id ,  to 

de te rmine  these functions,  we use the exact  solution [4 ] for a semibounded  space for C = 0 and  ;t = const  

F I (x ,  r )  = e r f c  z I --  v e x p  ( /zh?x + z~) erfc (~OlZ 2 + <P2Zl + ~O3z3) . ( 2 5 )  

Here we introduce the following parameters  and  notation: 

z I = 0 . 5 x / ~  ~ a t ;  z 2 = h j ~ / a c  ; z 3 =  a ( r j - ~ )  ; a = i t / c # ;  

h i =  a ( O j ) / i t  (O, r j ) ;  a (Oj) = T m l q ( O ( O ,  r j ) ) / ( l  - O ( 0 ,  r i ) ) .  

The  coefficients/x,  v, and r and the product  T3z3 allow for the nonl inear i ty  in the problem with condi t ions 

(16), (22), and  (23). For  small values of u we calculate erfc u = 1 - err u by the asymptot ic  expans ion  [5] 

2 ~ ~.2n+ 1 
e r f u = - -  2J , u < 0 . 9 .  

,~=0 n ! (2n + 1) 

When u > 0.9, we find eric u using the approximat ion 15 I 

eric u = (1 + 0.2784u + 0.2304u 2 + 0.0010u 3 + 0.0781u4) -'~ . 

The  derivatives of thc probabi l i ty  integral  a re  de te rmined  by the cxact formula (crf u)'u = 2 exp ( - u 2 ) / 4 - ~ .  The  

function z3 = { h 2 a ( r !  - r)} 1 l is selected so that at the point r i thc condit ions z3 = 0 and (z3)~ = 0 are  sat isf ied,  

under  which z3 does not affect the values of O and O'r at this point but allows one to change cons iderab ly  O and 

O' r within the intervals (z/, r./+l). Approximat ing  functions with these propert ies  are also used in the method of 

finite elements.  Calculat ions show that by means of the function z 3 it is possible to improvc subs tan t ia l ly  the 

approximat ion of the solution in the presence of a pronounced nonl inear i ty  in the region. 
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TABLE 1. Relat ive Tempera tu r e  in a Semibounded  Space for Small T imes  in Heat ing  under  Non l inea r  Condi t ions  of 

Heat T rans fe r  

r.  sec 
x.  lO 3, m 

5 10 15 20 25 30 

0 

50 

100 

0.2689 

0.2600 

0.2544 

0.2759 

0.2671 

0.2602 

0.2811 

0.2723 

0.2649 

0.2854 

0.2767 

0.2690 

0.2891 

0.2805 

0.2727 

0.2925 

0.2823 

0.2761 

The  values of v are  found from the condit ion of conjugation of the e lements  O in time for i tera t ions  j and  

j + 1: O(xi,  rj, vj_l)  = O(xi ,  rj, vj). The  coefficient/~ is calculated from the boundary  condi t ion (15). The  values of 

~oI and ~2 are  found from Eqs. (16) and  (17) using l inear interpolat ion.  The  coefficient ~'3 is de t e rmined  from Eq. 

(18). In the course of the calculat ions we check the minimizat ion of the functional  l ( O )  < 3 .10  -4 .  

Tab le  1 presents  some resul ts  of calculat ions for the following condit ions:  T m = 1200 K, T(x,  0) = 300 K, 

C = 4 .10  - 8  W / ( m 2 .  K4), ~-0 = 40 W / ( m . K ) ,  fl = 2, �9 = 0.5, a c = 50 W / ( m 2 - K ) ,  cp = 4.106 J / ( m . K ) .  For  r = 10 

sec and  x = 0 the values of the coefficients are/~ = 1.0192, v = 1.0050, ~ol = 1.2455, ~P2 ~' 0.9961, ~o 3 - 15.93. The  

error  for the given values of O(0 ,  r) does not exceed 0 .5%.  

Var ia t ional  calculat ions with the a id  of functional (16) show that  the error  cf calculat ions in this case 

decreases  by an o rde r  or  more as compared  to the results ob ta ined  by  the f in i te-di f ference method.  With f ini te-  

difference approx imat ions  the values of t empera tu re  for small  values of r can differ  by 5 0 - 1 0 0 %  due only to the 

choice of the way of averaging of the  thermal  conductivity 2 ( 0 )  [3 ]. In this case f luctuat ions of the  approx imat ions  

in the spatial  region that  contradic t  the physical  meaning of ten occur. These  errors  do not appear  when the 

suggested var ia t ional  scheme is used. 

It follows from the calculat ions that  minimizat ion of er rors  is to a great  extent  de t e rmined  by the ex t remal  

propert ies  of functional  (16). The  res iduals  of the equations can be minimized at cer ta in  points by the methods  of 

polydimensional  opt imizat ion,  but if the functional  has no ex t remum or  the res idual  of Eq. (16) is subs tant ia l ,  then 

minimizat ion of the errors  of t empera tu re  calculat ions will, as a rule,  be unsat isfactory.  Calculat ions  per formed for 

different  problems show that  if functional  (16) has an ex t remum,  then at cer tain points  xi the maximum rate of 

approach to equi l ibr ium O'~ can occur. This  suggests  that functional  (16) expresses  a physica l ly  exis t ing direct ivi ty  

of spontaneous  processes to equi l ibr ium, which makes it possible to select approx imat ing  functions in an opt imum 

way. In some prob lems  t i m e - d e p e n d e n t  coefficients that  a re  found from the condi t ion of the exis tence  of an 

ex t remum can coincide up to the fourth sign with the corresponding values of the coefficients for the exact  solutions;  

this also confirms the efficiency of using the ext remal  propert ies  of functional  (16). 

Minimizat ion of the er ror  of calculat ions depends  s t rongly  on the choice of approx imat ing  functions O,  

which should approx ima te  the change in the derivatives Ox, Oxx, and  O'~ in space and time with cer tain re l iabi l i ty .  

If o ther  approx imat ions  are  used in the example  given above, in par t icular ,  the functions Oi,j = N(r)  cos (,uix) which 

de te rmine  the charac te r  of the change in the derivatives only for large values of r ra ther  well [2 l, then the errors  

of calculat ions grow cons iderab ly .  With such an unsat isfactory choice of approximat ions  O it is often impossible  to 

minimize the errors.  Use of Eq. (17), which is obta ined  by the first law of the rmodynamics ,  improves cons iderab ly  

the process of calculat ion error  minimizat ion.  

N O T A T I O N  

0 = T / T m ,  t e m p e r a t u r e ;  W. new t h e r m o d y n a m i c  function; T, abso lu t e  t e m p e r a t u r e ;  Tin, m e d i u m  

temperature;  x. xi. coordinates ;  3. timc; q. hcat flux; Aq s, fictitious heat  flux; 2. thermal  conductivi ty;  c. heat  

capacity;  p .  densi ty ;  | approx imat ing  functions; |  p iecewise-smooth e lements  of the functions 0 ;  j'. a rb i t ra r i ly  

small variat ions of the solution of the problem 0; O u, | approximat ions  to the solution from below and from above; 

1. functional;  61. first variat ion of the functional;  621. second variat ion;  e. residual  of the heat  conduct ion equation;  
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E, residual of the boundary condition; i, number of a spatial step; j, number of a time step; 1 - y, relative initial 

temperature; a, thermal diffusivity; C, coefficient of radiation; a c, coefficient of convective heat transfer; fl and tlJ, 

coefficients determining the function ;t(O);/~, v, ~o, unknown coefficients. 
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