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THERMODYNAMIC SUBSTANTIATION OF THE
VARIATIONAL PRINCIPLE FOR NONLINEAR
PROBLEMS OF UNSTEADY-STATE HEAT CONDUCTION

V. A. Bondarev UDC 5§36.2:517.9

A variational formulation of the problem of unsteady-state heat conduction is presented. A nonlinear
functional obtained as a result of an analysis of unsteady-state heat transfer is suggested. The variational
method can be used for solving problems with a strong nonlinearity for which finite-difference
approximations do not enable one to obtain sutisfactory results. A technique for calculating the
approximation error in variational problems is considered.

The methods of variational calculus usually used do not enable one to determine the functional that has
an extremum at the solution of nonlinear problems of unsteady-state heat conduction under the condition that the
differential equation of heat conduction will be the Euler equation for the functional studied. The present paper
suggests a new principle for constructing such a functional based on thermodynamic analysis of variations of the
solution. Here residuals of the heat conduction equation and the boundary conditions are considered as fictitious
heat sources that depend on time and the spatial coordinates. For these conditions approximating functions are
solutions of a problem with fictitious source, that has a physical meaning, and arbitrary variations of the solution
will be the result of the action of these sources {1, 2].

The suggested method for approximating solutions of unsteady-state heat conduction problems enables one
to take into account all possible errors of the variational scheme and the corresponding fictitious heat sources. As
a result the problem with fictitious sources is always solved correctly. For this problem, on the basis of the first
law of thermodynamics, the heat balance equation for fictitious sources can be constructed and the signs of these
sources as well as the signs of the corresponding variations of the solution can be determined. This makes it possible
10 suggest a method for estimating the absolute error that is thermodynamically substantiated. The performed
analysis shows that with allowance for the signs of the fictitious sources approximations to the solution of the
problem from below and from above can be found. In using the variational scheme considered one can diminish
calculation errors by an order of magnitude or more as compared to other approximate methods.

As follows from a thermodynamic analysis, the directivity of all spontaneous processes of heat transfer in
a closed thermodynamic system toward equilibrium with the environment can be used as a principle for constructing
a functional in problems of unsteady-state heat condution. In accordance with the second law of thermodynamics,
only spontaneous processes bringing the system closer to thermal equilibrium with the environment are possible in
a nonstationary thermodynamic system. Therefore, the system will approach the equilibrium state with a certain
speed that is maximum for the assigned initial and boundary conditions.

The solution will be varied so that at the preceding instants of time fictitious sources could exist that would
increase the nonequilibrium condition in the system and between the system and the environment. Then in the
problem involving sources the time corresponding to specificd temperatures at some points will be greater than the
time corresponding to the same temperatures for the solution. With such a choice of approximating functions a
variational functional can be determined so that at the extremal point of the functional corresponding to the solution,
the highest rate of temperature variation relative to some approximations will occur. If the variational problem has
a solution, then the existence of a class of functions is always possible in which the maximum rate of temperature
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variation corresponds to the solution, since, according to the second law of thermodynamics, in a real closed system,
processes are possible that only bring the system to equilibrium.

Use of the suggested functional in calculations is possible under the condition that the approximating
functions enable one to realize the above-determined conditions for the existence of a functional extremum for the
considered problem. One does not succeed in proving by any theoretical assumptions or formal arguments that in
the selected class of functions an extremum can be realized to which the maximum rate of approach of the system
to equilibrium corresponds. With allowance for this fact there are reasons to assume that the extremum following
from the second law of thermodynamics is a thermodynamic regularity that, just like the second law of
thermodynamics, cannot be substantiated theoretically and should be justified as a result of observations of physical
objects. Therefore, for the problem considered the existence of an extremum should be checked by calculations.

The minimization of errors in nonlinear variational problems depends strongly on the choice of
approximating functions, which, as is known, is typical for variational methods. In linear discrete schemes the
approximation to the solution can be improved by increasing the number of steps, whereas in some nonlinear
problems an increase in the number of steps does not provide the necessary minimization of errors. Therefore, in
nonlinear variational problems minimization of errors should be performed by means of the corresponding choice
of approximations.

Approxlmatmg functions in nonlinear problems should allow for the character of the distribution of the
derivatives Sx, 8,,, and 8, in the spatial region and also satisfy conditions of continuity of derivatives in all the
cases where continuity occurs in the physical problem. One should take into account the fact that some
approximation techniques do not make it possible to realize the existing continuity of derivatives and this can
increase considerably the effect of fictitious sources. For example, in calculations of heating processes one can use
the depth of the heated layer x,(r), which is determined by means of the corresponding choice of approximating
functions ©. Beyond the limits of this layer the derivatives 8; and 8; are taken to be equal to zero. In this case
in the vicinity of the point x,(z) the derivatives 8; and @;X can be rather large, whereas the derivative @; is close
to zero. This results in the appearance of considerable residuals of the heat conduction equation, which in the case
of strong nonlinearity cannot be minimized by increasing the number of steps.

In nonlinear finite-difference schemes the continuity of derivatives is one of the conditions for proving the
convergence of nonlinear approximations to the solution. One succeeds in proving convergence only for simple
physical conditions. However, in finite-difference schemes, for small times or in the case of a semi-infinite space
one should also calculate some conventional thickness of the heated layer. With such an approximation it is
impossible to provide continuity of derivatives, which, in accordance with the aforesaid, is one of the reasons for
large and difficult-to-eliminate errors that cannot be estimated quantitatively [3]. In finite-difference
approximations in nonlinear problems one tries to minimize these errors by different artificial techniques that have
no theoretical substantiation and are based on the personal experience of the programmer. This makes the creation
of unified approaches to the development of standard calculational programs quite difficult. With allowance for the
aforesaid, one should assume that in solving nonlinear problems variational schemes may prove to be promising.

Studies show that approximating functions for nonlinear problems can be selected by analogy with solutions
of linear problems that are close in meaning, assuming that after the introduction of the corresponding coefficients
and some terms allowing for nonlinearity these functions can, to a certain degree, determine the real distribution
of derivatives on the region and also take into account continuity of derivatives. Other known approximations in
the class of functions © € C? can be used; however, as calculations show, this may require a considerable increase
in the time for testing and correcting the approximating functions.

Errors of temperature calculation in nonlinear unsteady-state problems can be reduced substantially if the
solution of the problem 9 is approximated by broken curves composed of piecewise-smooth elements in the spatial
and time regions. As these elements we use functions O,

@=0+/, 0=T/T,, ©cC’, (1

255



that are selected so that the variations f of the solution 9 are arbitrarily small. It is evident that with some choice
of the coefficients functions (1) allow not only minimization of fictitious sources but also compensation of their
mutual effect to a certain extent.

Studies show that to construct the corresponding functional in a variational formulation of a nonlinear
problem of unsteady-state heat conduction it is expedient to introduce a new thermodynamic function W whose
variation is determined as follows [1 ]:

AW = — T,zn g (3) dr . @

O -

We find the heat flux ¢(@) in (2) by the Fourier law of heat conduction g(® = —A(9)d,. In view of the fact
that the flux ¢(%) depends only on the temperature 3 we determine that in the case of heat conduction in a solid
body the quantity W is a function of state. We find AW for an element of unit area with a length x, — xq.

T;wa =~ f fn (@ ), + Dg, (D)) dx ~ 9g (V) ar=o0. 3

0 10 IO

We find the derivative of the heat flux q;(t‘)) = ——().(17)1'7',();r from the nonlinear differential equation of heat conduction
with a negative volumetric heat source ¢,(?):

e@ =c@pd -~ A, +q,® =0. @

Substituting ¢ and q;(ﬂ) into (3), we determine a functional for one-dimensional conditions:

fa Xn X

1@ =T5 ] [ c@pt +A@) 8, +9q, @) dx— 04 @®)9,| tdr=0. ©
0| xp *o

We assume that an initial temperature distribution is assigned:
9p =1 (x,0). (6)

Moreover, for the boundary surface S| the value of the heat flux ¢; is assigned as a function of the temperature
Y51, and at the boundary S = § — S; the temperature distribution 9;,(x, 7) is known:

E; =¢(04) -1 (9y) (951)'71 =0; E;= 0s2 - 05 (x,71). (7

The residuals E| are fictitious sources that depend on the temperature of the surface S;, and E; is equal to the
change in the temperature of the surface S, resulting from the action of fictitious sources on this surface.

Generalizing [(0) to the spatial region Q bounded by the surface S, we determine, using (5)-(7), a
functional whose extremal properties will be studied:

Ta

2
1@ = £(A M D + ¢ (D) pdd, + Dg, (D)) dQ = [ 0,q4 (D)) S -
0 S

—S[A(aﬂ) D)V dS|dr =0, 0, = 30/0x,, k=1,2,3. ®)
2

Having substituted approximations (1) into (3), we find that for functional (8) both the necessary condition

81 = 0 and the sufficient condition 8%/ < 0 or 82/ > 0 for the existence of an extremum on the solution # do not
hold. Thus, onc docs not succeed in determining an extremum of the functional for the considered problem by the
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methods of classical variational calculus. Therefore, the existence of an extremum will be checked with allowance
for the thermodynamic analysis presented above, considering residuals of the heat conduction equation (4) and the
boundary conditions (7) as fictitious heat sources. With the known initial temperature distribution (6) and the
prescribed boundary conditions (7) we find that the approximating functions (1) will be solutions of the physically
meaningful problem (4), (6), and (7) with the fictitious sources €(©), E, and E;, and variations of the solution f
can be considered as resulting from the action of these sources.

We vary the solution # so that the variations f are arbitrarily small and fictitious sources increase
nonequilibrium nature of the thermodynamic system (4), (6), and (7) for a!l preceding 7. Then, in accordance with
the thermodynamic conditions, considered above the existence of an extremum of functional (8) on the solution ¢
is possible.

To determine conditions for the existence of a functional extremum in the class of functions (1) by the
Ostrogradskii—Gauss formula, we find from (7) and (8)

Ya

1) = [ e (x,, 1) 9dQdr , 9)
0

where
t(xpT) = c@)pt, - A@ i +q, @) =0, k=1,2,3. am

The presence of the operator e(xg, ) of Eq. (10) in (9) for three-dimensional conditions is a result of generalization
of Egs. (4) and (5) to the region Q.

In accordance with (9) and (10) the functional /(©) always vanishes on the solution 4. Therefore, the
existence of an extremum of the functional /(®) can be established by determining the signs of its increment A/,
which is equal to the value of the functional A/(®) = [(©). Sufficient conditions for the existence of a functional
extremum on the solution 9 are determined by the inequalities

1(®y) <0 and 1(©y) <0 or 1(©,) >0 and 1(8,) >0, (11)

which should be fulfilled uniquely for approximations to the solution & from below ©, and from above ©,,.

Functional (9) involves the operator of the differential equation of heat conduction (10), which also occurs
in the case of a functional for which the equation of heat conduction (10) is the Euler equation. In view of the fact
that Eq. (10) is the expression for the first law of thermodynamics in the problem considered, functional (10) and
the classical variational functional can be considered thermodynamically equivalent. With allowance for the fact
that the problem with fictitious sources is solved correctly, the functional also satisfies the first law of
thermodynamics for the problem with fictitious sources.

According to expression (9), the functional /(®) determines the orthogonality of the residual ¢ of Eq. (4)
and the approximations ©, which assumes minimization of . In contrast to projection methods using
orthogonalization, for example, the Galerkin method, orthogonality is established not formally, but as a
consequence of the physical condition (3} for the function of state W. By integration with respect to x; and z in (8)
the effect of 1(®) and c(®) will be taken into account not only at the nodal points x; and 7; but also inside the
corresponding ranges; as calculations show this improves considerably the approximation of the solution of the
problem. It is well to bear in mind that in the case of finite-difference approximations the effect of A(®) and c(©)
can be taken into account only at the nodal points by substituting arbitrarily averaged numerical values of A and ¢
into grid equations. Inside the approximating elements 4 and ¢ arc approximated with substantial errors. This leads
to violation of the cnergy conservation law and to an increase in the fictitious heat sources and in the corresponding
variations f.

If functions (1) afford rather good approximations, then it is expeditious to usc a functional constructed
for the entropy flow dg/ T. Calculations show that this functional can have an extremum on the solution 9 in cascs
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xg than for the solution 9, and ©,; will be the approximation to ¥ from below. Similarly we find that if at the time
1* the function Ag; changes sign from "minus” to "plus” once, then for Agg(r)) = 0 the value of ©;; will be the
approximation to 9 from above. In the same manner other approximations 8,; and 8y; are determined, including
at points x; inside the interval x, — xp.

As an example we consider a nonlinear problem of heating a semibounded space in the case of a nonlinear
heat flux on the surface. A specific feature of this example is that the use of discrete approximations for such
problems does not make it possible to provide continuity of the derivatives in the region and, as was noted above,
1o approximate with sufficient accuracy the change in the derivatives of the solution # in space.

We consider heating of the semi-infinite space by a radiative-convective heat flux

70, 7) = CT (1 = 9*0, 1)) + a T, (1 -9 (0, 1) 22)

with the initial condition T(x, 0) = const and the medium temperature T,, = const for the case where the thermal
conductivity A depends on temperature:

1@ =4 {1 +B(© (x.1) = © (x, 0)"}; dg=4(x,0). 23

We assume that ¢ = const and ¢, = 0.
The solution is approximated by piecewise-smooth elements:

©, ;=1-y(l-F(x0); y=1=T(x,0/T,. (24)

The functions Fj(x, 1) are selected so that they take into account the real shift in the maximum of the derivative
(©;)max With increase in t within the region from the boundary surface x = 0. With allowance for the aforesaid, to
determine these functions, we use the exact solution {4] for a semibounded space for C = 0 and A = const

Fy (x,7) = erfc z) —vexp (uhx + z%) erfc (p,2; + prz) + p323) . 25

Here we introduce the following parameters and notation:
jil
7y =05x/Var; zp=hVar; z3={h?a(r}-—r)} s a=43/¢0;

hi=a(©)/A(0,1); a(®)=T,'q(® 0 1))/(1-0(0,1).

The coefficients u, v, and ¢ and the product ¢3z3 allow for the nonlinearity in the problem with conditions
(16), (22), and (23). For small values of u we calculate erfc u = 1 — erf u by the asymptotic expansion [5]

o 2n+1

2 7
eru—*\/‘_]?—ngon!(zn+l), u=<09.

When « > 0.9, we find erfc u using the approximation [5]

erfc u = (1 + 0.2784u + 0.2304x” + 0.00104° + 0.0781u") %

The derivatives of the probability integral are determined by the exact formula (erf u);, =2 exp (——uz)/\/z_r. The
function z3 = {hjzu(r/ - 1)) !is selected so that at the point 1; the conditions z3 = 0 and (13); = ( are satisfied,
under which z3 does not affect the values of © and 8; at this point but allows one to cliange considerably © and
@; within the intervals (1, 7;4,). Approximating functions with these properties arc also used in the method of
finitec clements. Calculations show that by means of the function z3 it is possiblc to improve substantially the
approximation of the solution in the presence of a pronounced nonlincarity in the region.
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TABLE 1. Relative Temperature in a Semibounded Space for Small Times in Heating under Nonlinear Conditions of
Heat Transfer

3 T, Sec
x-107, m
5 10 15 20 25 30
0 0.2689 0.2759 0.2811 0.2854 0.2891 0.2925
50 0.2600 0.2671 0.2723 0.2767 0.2805 0.2823
100 0.2544 0.2602 0.2649 0.2690 0.2727 0.2761

The values of v are found from the condition of conjugation of the elements ® in time for iterations j and
j+ 1 O(x, 1), vj—1) = ©(x;, 1, vj). The coefficient u is calculated from the boundary condition (15). The values of
p1 and p3 are found from Egs. (16) and (17) using linear interpolation. The coefficient @3 is determined from Eq.
(18). In the course of the calculations we check the minimization of the functional /(8) < 3- 1074,

Table 1 presents some results of calculations for the following conditions: T\, = 1200 K, T(x, 0) = 300 K,
C=41078 W/ (m? K%, 1g=40 W/ (m - K), =2, ¥ =0.5, a. = 50 W/ (m?-K), o = 4-10% J/(m-K). For t = 10
sec and x = 0 the values of the coefficients are u = 1.0192, v = 1.0050, ¢, = 1.2455, ¢, = 0.9961, 93 = 15.93. The
error for the given values of ©(0, 7) does not exceed 0.5%.

Variational calculations with the aid of functional (16) show that the error cf calculations in this case
decreases by an order or more as compared to the results obtained by the finite-difference method. With finite-
difference approximations the values of temperature for small values of t can differ by 50—100% due only to the
choice of the way of averaging of the thermal conductivity () [3]. In this case fluctuations of the approximations
in the spatial region that contradict the physical meaning of ten occur. These errors do not appear when the
suggested variational scheme is used.

It follows from the calculations that minimization of errors is to a great extent determined by the extremal
properties of functional (16). The residuals of the equations can be minimized at certain points by the methods of
polydimensional optimization, but if the functional has no extremum or the residual of Eq. (16) is substantial, then
minimization of the errors of temperature calculations will, as a rule, be unsatisfactory. Calculations performed for
different problems show that if functional (16) has an extremum, then at certain points x; the maximum rate of
approach to equilibrium (~); can occur. This suggests that functional (16) expresses a physically existing directivity
of spontaneous processes to equilibrium, which makes it possible to select approximating functions in an optimum
way. In some problems time-dependent coefficients that are found from the condition of the existence of an
extremum can coincide up to the fourth sign with the corresponding values of the coefficients for the exact solutions;
this also confirms the efficiency of using the extremal properties of functional (16).

Minimization of the error of calculations depends strongly on the choice of approximating functions ©,
which should approximate the change in the derivatives 8,, @xx, and @ in space and time with certain reliability.
If other approximations are used in the example given above, in particular, the functions ©; ;= N(r) cos (u;x) which
determine the character of the change in the derivatives only for large values of t rather well {2], then the errors
of calculations grow considerably. With such an unsatisfactory choice of approximations © it is often impossible to
minimize the errors. Use of Eq. (17), which is obtained by the first law of thermodynamics, improves considerably
the process of calculation error minimization.

NOTATION

9 = T/T,, temperature; W, ncw thermodynamic function; T, absolute temperature; Tp, medium
temperature; x, x;, coordinates; 1, time; ¢, heat flux; Ag,, fictitious heat flux; 4, thermal conductivity; ¢, heat
capacity; p, density; ©, approximating functions; @, ;, piccewisc-smooth elements of the functions ©; /, arbitrarily
small variations of the solution of the problem 9; ©,, @, approximations to the solution from below and from above;
I, functional; &1, first variation of the functional; 62]‘ sccond variation; ¢, residual of the heat conduction equation;
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E, residual of the boundary condition; i, number of a spatial siep; j, number of a time step; 1 — y, relative initial
temperature; a, thermal diffusivity; C, coefficient of radiation; a., coefficient of convective heat transfer; 8§ and ¥,
coefficients determining the function 4(©); u, v, ¢, unknown coefficients.
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